
Windows Kernel Fuzzing
for Beginners

Ben Nagy

 ohai .

- Not oldsk00l. Just old.

- ~ 5 weeks experience with Windows Kernel

- > 5 years experience with Fuzzing

- Hate all Technology

- Ruby and Drinking Make the Pain Go Away

Disclaimer :
I am aware of the prevailing opinion that fuzzing talks

without bugs suck, by definition . I do not have any bugs. Even

if I did have bugs, I ʇƯțƎĨƣǡȅ tell you. There are no bugs.

There are, however, otters and buff Russian men of dubious

sexuality . Also, many red boxes. You have been warned.

Secret Fuzzing Wisdoms

ÅSelect a Good Target

ÅAcquire Essential Knowledge

ÅApply Fuzzing Canon - DIGS

ïHow do we Deliver

ïHow do we Instrument

ïHow do we Generate

ïHow does that Scale

Secret Fuzzing Wisdoms

ÅDelivery, Instrumentation, Generation
ïGotta keep em separated!

ïPlease stop writing heavily coupled tools, kthx

ÅA good toolchain allows rapid retargeting
ïStart fuzzing with a stupid generator

ïCold cores find no bugs!

Target Selection

n_bugs = p_bug * n_tests

Åp_bug / testing speed is inherently target specific

ÅCan tune the equation

ïBetter (possibly slower) Generators

ïMore Scale

ïRapid Tooling (lead time counts!)

ïBetter Samples

ïPre Fuzzing Toolchain

p_bug++

ÅFeedback Driven Fuzzing
ïVia code coverage, success rate or some other metric

ïEg SAGE, bunny, EFS, Flayer

ïPRO - Awesome, super elite, finds bugs dumb fuzzers will never hit

ïCON ς Slow, difficult to write, poor Windows support

ÅFault Injection / deeply instrumented fuzzing
ï Inject bad data close to code being attacked

ïPRO - vastly simplifies delivery

ïCON - need to then check reachability

ÅCorpus Distillation
ïLow effort, high reward technique

ïNeed a way to measure coverage (tricky for kernel stuff)

Target Selection

n_bugs = p_bug * n_tests

ÅMore broadly, n_bugs ƛǎƴΩǘ ƛƴǘŜǊŜǎǘƛƴƎ

ÅAre there USEFUL bugs in there?

ÅIf there are, can we locate them

ïBug Chaff

ïPost Fuzzing Toolchain

Target Selection

n_bugs = p_bug * n_tests

ÅBug Utility is SUBJECTIVE

ÅSell? Use? Fix? Disclose?

ÅWhatever our utility metric, can we REALISE VALUE
ïWill it provide USEFUL CAPABILITY?

ïIs it RELIABLY exploitable?

ïWill anyone buy it anyway?

ïIs it worth fixing?

ïWill it bring us fame and imply great sexual prowess?

Windows Kernel, Simplified

ÅCŜŀǘǳǊƛƴƎ ά.ŀǊǊȅ ǘƘŜ YŜǊƴŜƭ hǘǘŜǊέ

ÅSome stuff is completely missing or wrong

ÅAll of it is greatly simplified

ÅReal resources abound!

ïMSDN (new layout / navigation is awesome)

ïAnything by j00ru, Alex Ionescu, Tarjei Mandt

ïAnything by Russinovich / Solomon / Probert

ïά/wYέ ƛǎ ŀƴ ŀŎŀŘŜƳƛŎ ŎƻǳǊǎŜΣ ŦǊŜŜƭȅ ŘƻǿƴƭƻŀŘŀōƭŜ

ïά²wYέ ƛǎ ŀ Ŧǳƭƭ ǿƛƴŘƻǿǎ ƪŜǊƴŜƭ ǎƻǳǊŎŜ ǘǊŜŜΣ Ǉƭǳǎ ōǳƛƭŘ ǘƻƻƭǎ

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

Userland

ntdll

kernel32

Dragons

Hardware

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

Userland

ntdll

kernel32

Dragons

Hardware

1. Setup syscall args

2. syscall number in eax

3. int2e / sysenter / syscall

ǈ ǞĘƯƣȅĶʌȅ ǭʇŹȅĘŲǟ ǋ

4. Lookup syscall in SSDT

5. Dispatch to correct driver

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

IO USER GDI

Userland

ntdll

kernel32

Hardware

Other Complicated Stuff

Dragons

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

IO USER GDI

Drivers

Are

Layered!

Userland

ntdll

kernel32

Hardware

Other Complicated Stuff

Dragons

© Sven Micklish

ÅWindows IO is deeply async

ÅUses IO Request Packets (IRP)

ÅòFilteró Drivers can intercept these

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

IO USER GDI

Userland

user32

Hardware

Repressed Memories

Daddy Issues

© Sven Micklish

USER runs the GUI

ÅWindows, Menus, Cursors, Iconsé

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

IO USER GDI

Userland

gdi32

Hardware

Meaning of Life

Unladen Swallows

© Sven Micklish

Graphics Driver Interface

ÅBasically, it draws stuff

ÅMoved into kernel space ~NT4

ÅBitmaps, Fonts, Metafilesé

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

IO

Drivers

Are

Layered!

Userland

user32 / gdi32

Hardware

Evil Clowns

Broccoli USER GDI

Win32k.sys

Userland

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

IO USER GDI

Drivers

Drivers

Drivers

ntdll Ǿ țǭĶǤȌȗ Ǿ ţĨŹȌȗ Ǿ Ł

kernel32

Hardware

More Complicated Stuff

Boring / Complicated

(Direct Syscall)

Userland

Ǟ]Ê 'ʌĶĘțȅŹʆĶǟ

IO USER GDI

Drivers

Drivers

Drivers

ntdll Ǿ țǭĶǤȌȗ Ǿ ţĨŹȌȗ Ǿ Ł

kernel32

Hardware

More Complicated Stuff

Boring / Complicated

Filter?

Hook?

Hook?

Bug Classes

ÅLocalLocal
ïPrivilege escalation

ïSandbox escapes

ïTrending upwards in importance

ÅRemoteRemote
ïUsed to be the shiznit, now plagued by issues

ïFirewalls

ïWere great for indiscriminate attacks, less for targeted

ÅRemoteLocal
ïRequire a user to do something

ïAttack via email, document, URL etc

ïNow the Rolls Royce of bugs

Attack Vector Evaluation

Å/ƻƳƛƴƎ ΨǳǇΩ ŦǊƻƳ ǘƘŜ ƘŀǊŘǿŀǊŜ ǎƛŘŜ

ïWill yield RemoteRemotes

ïWǳǎǘ ƭƛƪŜ ΨƴƻǊƳŀƭΩ ƴŜǘǿƻǊƪ ŦǳȊȊƛƴƎ

ïSMB, RDP, tcpip.sys, wifiΣ ¦{.Χ

ïReliability issues? Stealth?

ïHardware differences?

Verdict: You first, guv.?

Attack Vector Evaluation

ÅSSDT Hooks / Filter Drivers / etc
ïGood for attacking 3rd party drivers

ïFuzzing logic itself really should be in-kernel (inflexible)

ïPublic implementations available

ïhttp:// code.google.com/p/ioctlfuzzer

ÅFinding AV bugs seems too cruel to be sport

Å/ŀƴΩǘ ǿǊƛǘŜ ŘǊƛǾŜǊǎ ƛƴ wǳōȅ L

Attack Vector Evaluation

ÅGDI is cool, because RemoteLocals
ïHistorically bug prone

ÅGeneral Syscalls might be fun
ïLocalLocals, but easy to prototype

ÅUSER is tricky, only yields LocalLocals
ïKeyboard Layouts burned by Stuxnet

ïPlus, Tarjei already looked at it

(Moment of Silence in honour of Bug Genocide)

© Sven Micklish

Letõs hit GDI!!

GDI - Delivery Vectors

ÅIŜǊŜΩǎ ǿƘŀǘ L ƘŀǾŜ ǎƻ ŦŀǊ
ïFonts - ¢¢CΣ h¢CΣ ChbΧΦ

ïCursors - BMP, CUR (animated)

ïMetafiles - EMF, WMF

ïImages - JPEG, PNG (!!)

ÅNot even close to complete
ïMetafiles cover a lot, though

GDI - Fonts

ÅGreat slides from BHEU12
http:// media.blackhat.com/bh-eu-12/Lee/bh-eu-12-Lee-GDI_Font_Fuzzing-Slides.pdf

(MANY THANKS to Lee & Chan for also sharing code)

ÅFonts are tricky beasts

ÅYou can also embed them (google EOT)

ÅSimple 9 ǎǘŜǇ ǇǊƻŎŜǎǎΧ

GDI - Fonts

 1. Load the fuzzed font from a file

debug_info "Removing any old copies of #{ font_file } "

GDI.RemoveFontResourceEx(font_file , 0, nil) # never know

added=GDI.AddFontResourceEx (font_file , 0, nil)

ÅLΩƳ bh¢ using FR_PRIVATE
ÅWorks for almost any font type
ÅProtip - fix checksums
ï (google B1B0AFBA)

GDI - Window Basics

 2. Create a Window Callback

def window_proc(hwnd, umsg, wparam, lparam)

 case umsg

 when GDI:: WM_DESTROY

 GDI.PostQuitMessage (0)

 return 0

 else

 # This handles all messages we don't explicitly process

 return GDI.DefWindowProc(hwnd, umsg, wparam, lparam)

 end

 0

end

GDI - Window Basics

Å Lots of people put their logic in here
ïHandle WM_PAINT, WM_RESIZE etc

ï[ƻǘǎ ƻŦ ǎŀƳǇƭŜǎ ƻƴƭƛƴŜ Řƻ ƛǘ ǘƘƛǎ ǿŀȅΣ ǘƻƻΧ

ÅI never found the need, but YMMV

GDI - Window Basics

 3. Register Window Class

window_class = GDI:: WNDCLASSEX.new

window_class [: lpfnWndProc] = method(: window_proc)

window_class [: hInstance] = hinst

window_class [: hbrBackground] = GDI:: COLOR_WINDOW

window_class [: hCursor] = 0

@atom = GDI.RegisterClassEx (window_class)

GDI - Window Basics

 4. Create a Window Instance

@hwnd ||= GDI.CreateWindowEx(

 GDI:: WS_EX_LEFT, # extended style

 poi (@atom), # class name or atom

 @opts [:title], # window title

 GDI:: WS_OVERLAPPEDWINDOW | GDI:: WS_VISIBLE, # style

 GDI:: CW_USEDEFAULT, # X pos

 GDI:: CW_USEDEFAULT, # Y pos

 @opts [:width], # width

 @opts [:height], # height

 0, # parent

 0, # menu

 hinst , # instance

 nil # lparam

)

GDI - Fonts

 5. Get Font Face Name (undocumented)

success=GDI.GetFontResourceInfo (

 w_fname,

 sz,

 buf ,

 2 # asks to receive a LOGFONTW in buf

)

lf= LOGFONTW.new buf # cast the buffer to a LOGFONTW

GDI.WideCharToMultiByte ǈ Ł lf [: lfFaceName]. to_ptr Łǋ

GDI - Fonts

 6Φ ά/ǊŜŀǘŜέ ǘƘŜ Cƻƴǘ

logical_font = GDI:: LOGFONTW.new

logical_font [: lfHeight] = font_size

logical_font [: lfFaceName]. to_ptr.put_string (0,font_face)

logical_font [: lfItalic] = 0

logical_font [: lfCharSet] = GDI:: DEFAULT_CHARSET

@current_font =GDI.CreateFontIndirect logical_font

raise_win32_error if @current_font .zero ?

7. Select it into the DC for our window

@old_font =GDI.SelectObject (dc, @current_font)

© Sven Micklish

What are Device Contexts?

Å Bits of screen or printer
ÅInclude ògraphics attributesó
Å (eg brushes, fonts, etc)

GDI - Fonts

 8Φ Iƻǿ ōƛƎ ƛǎ ŀ ΨƭƛƴŜΩ ƻŦ ǘŜȄǘΚ

build the string one glyph at a time until the

text extent is greater than our rect width

sz = GDI:: SIZE.new

until sz[:cx] > width || str.empty ?

 out << str.slice !(0, 1)

 GDI.GetTextExtentPoint32(dc, out, out.size , sz)

 guess = out.size

end

GDI - Fonts

 9. Actually draw some f**king text

GDI.send (

 text_out_method , # ExtTextOutW / A

 dc, # device context

 0, # X start

 @current_y , # Y start

 GDI:: ETO_GLYPH_INDEX, Ʈ 6ƯǤ ǠǤïʇǡ ƛƯĨĶ

 this_line , # RECT

 out , # str to draw

 out.size , # size

 nil # lpDx

)

@current_y +=sz[:cy]

ETO_GLYPH_INDEX

 ά ¢ƘŜ lpString array refers to an array returned
from GetCharacterPlacement and should be

parsed directly by GDI as no further language-
specific processing is requiredΦ έ

ïMSDN

(This is why we use ExtTextOut and not DrawText)

© Sven Micklish

That Sucked!

(Still better than Gtk tho)

DEMO

Image: pavel-petel.tumblr.com - NSFW

